Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 13: 931210, 2022.
Article in English | MEDLINE | ID: covidwho-2065505

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) an important form of a thrombotic microangiopathy (TMA) that can frequently lead to acute kidney injury (AKI). An important subset of aHUS is the anti-factor H associated aHUS. This variant of aHUS can occur due to deletion of the complement factor H genes, CFHR1 and CFHR3, along with the presence of anti-factor H antibodies. However, it is a point of interest to note that not all patients with anti-factor H associated aHUS have a CFHR1/R3 deletion. Factor-H has a vital role in the regulation of the complement system, specifically the alternate pathway. Therefore, dysregulation of the complement system can lead to inflammatory or autoimmune diseases. Patients with this disease respond well to treatment with plasma exchange therapy along with Eculizumab and immunosuppressant therapy. Anti-factor H antibody associated aHUS has a certain genetic predilection therefore there is focus on further advancements in the diagnosis and management of this disease. In this article we discuss the baseline characteristics of patients with anti-factor H associated aHUS, their triggers, various treatment modalities and future perspectives.


Subject(s)
Acute Kidney Injury , Atypical Hemolytic Uremic Syndrome , Complement System Proteins , Acute Kidney Injury/genetics , Acute Kidney Injury/immunology , Acute Kidney Injury/therapy , Antibodies/genetics , Antibodies/immunology , Atypical Hemolytic Uremic Syndrome/complications , Atypical Hemolytic Uremic Syndrome/genetics , Atypical Hemolytic Uremic Syndrome/immunology , Atypical Hemolytic Uremic Syndrome/therapy , Blood Proteins/genetics , Complement C3b Inactivator Proteins/genetics , Complement Factor H/antagonists & inhibitors , Complement Factor H/genetics , Complement Factor H/immunology , Complement System Proteins/genetics , Complement System Proteins/immunology , Humans , Plasma Exchange
2.
Rom J Intern Med ; 60(2): 138-142, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1613500

ABSTRACT

The evidence regarding thrombotic microangiopathy (TMA) related to Coronavirus Infectious Disease 2019 (COVID-19) in patients with complement gene mutations as a cause of acute kidney injury (AKI) are limited. We presented the case of a 23-year-old male patient admitted with an asymptomatic form of COVID-19, but with uncontrolled hypertension and AKI. Kidney biopsy showed severe lesions of TMA. In evolution patient had persistent microangiopathic hemolytic anemia, decreased level of haptoglobin and increased LDH level. Decreased complement C3 level and the presence of schistocytes were found for the first time after biopsy. Kidney function progressively decreased and the patient remained hemodialysis dependent. Complement work-up showed a heterozygous variant with unknown significance in complement factor I (CFI) c.-13G>A, affecting the 5' UTR region of the gene. In addition, the patient was found to be heterozygous for the complement factor H (CFH) H3 haplotype (involving the rare alleles of c.-331C>T, Q672Q and E936D polymorphisms) reported as a risk factor of atypical hemolytic uremic syndrome. This case of AKI associated with severe TMA and secondary hemolytic uremic syndrome highlights the importance of genetic risk modifiers in the alternative pathway dysregulation of the complement in the setting of COVID-19, even in asymptomatic forms.


Subject(s)
Acute Kidney Injury , Atypical Hemolytic Uremic Syndrome , COVID-19 , Communicable Diseases , Thrombotic Microangiopathies , Acute Kidney Injury/complications , Adult , Atypical Hemolytic Uremic Syndrome/complications , Atypical Hemolytic Uremic Syndrome/genetics , COVID-19/complications , Communicable Diseases/complications , Humans , Male , Thrombotic Microangiopathies/genetics , Young Adult
3.
J Thromb Haemost ; 18(9): 2110-2117, 2020 09.
Article in English | MEDLINE | ID: covidwho-623519

ABSTRACT

COVID-19 is frequently accompanied by a hypercoagulable inflammatory state with microangiopathic pulmonary changes that can precede the diffuse alveolar damage characteristic of typical acute respiratory distress syndrome (ARDS) seen in other severe pathogenic infections. Parallels with systemic inflammatory disorders such as atypical hemolytic uremic syndrome (aHUS) have implicated the complement pathway in the pathogenesis of COVID-19, and particularly the anaphylatoxins C3a and C5a released from cleavage of C3 and C5, respectively. C5a is a potent cell signalling protein that activates a cytokine storm-a hyper-inflammatory phenomenon-within hours of infection and the innate immune response. However, excess C5a can result in a pro-inflammatory environment orchestrated through a plethora of mechanisms that propagate lung injury, lymphocyte exhaustion, and an immune paresis. Furthermore, disruption of the homeostatic interactions between complement and extrinsic and intrinsic coagulation pathways contributes to a net pro-coagulant state in the microvasculature of critical organs. Fatal COVID-19 has been associated with a systemic inflammatory response accompanied by a pro-coagulant state and organ damage, particularly microvascular thrombi in the lungs and kidneys. Pathologic studies report strong evidence of complement activation. C5 blockade reduces inflammatory cytokines and their manifestations in animal studies, and has shown benefits in patients with aHUS, prompting investigation of this approach in the treatment of COVID-19. This review describes the role of the complement pathway and particularly C5a and its aberrations in highly pathogenic virus infections, and therefore its potential as a therapeutic target in COVID-19.


Subject(s)
Blood Coagulation , COVID-19/immunology , Complement Activation , Complement C3a/metabolism , Complement C5a/metabolism , Inflammation/metabolism , Animals , Atypical Hemolytic Uremic Syndrome/complications , Atypical Hemolytic Uremic Syndrome/immunology , COVID-19/complications , COVID-19/pathology , Complement Inactivating Agents/pharmacology , Cytokines/metabolism , Hemoglobinuria, Paroxysmal/complications , Hemoglobinuria, Paroxysmal/immunology , Homeostasis , Humans , Immunity, Innate , Lung Diseases , Lung Injury , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL